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ABSTRACT

Conditions are given under which a variationally determined
frequency dependent polarizability will satisfy the oscillator

strength sum rule.

* This research was supported by the National Aeronautics

and Space Administration Grant NsG-275-62.



In their variational calculations of the frequency dependent
dipole polarizability of helium, Chan and Dalgarnol found that
their approximate oscillator strengths automatically satisfied the
oscillator strength sum rule whatever the size of the basis set
they used. In the first part of this note we exhibit the underlying
reason for this result,2 and in the second part we will generalize
the result to situations involving non linear variational parameters.
We will use the notation of reference 1 throughcut, except that
instead of considering the dipole polarizability we will consider
an arbitrary polarizability. Hence we replace their r by V .
Expansion of the trial function ;K't (A2 ) in terms of a fixed
basis set is readily seen3 to be equivalent to finding the exact
polarizability of a system described by a Hamiltonian H under a
perturbation V where the bar denotes projection onto the basis
set plus q}o'4 Thus, by the usual argument the sum of the

approximate oscillator strengths will satisfy
Tqo = 4 (h, [V TRTIY)

where the square bracket denotes a commutator. We will now show
that if V 4@ is a member of the basis set (as was the case in

the work reported in reference 1) then
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which of course then explains the result found in reference 1.
The preof is simp1e6, we merely look at the two sorts of
terms involved. First consider T-\ = (-\\Jo)v LAY ‘\‘D ’)

" Since V\\’o is in the basis set we have V ‘{"o: \/\k, whence

T = (.%7\/ {_T\/ \a/o) which in turn, for the same reason,
equals (,%7 \VA PRV ‘\/o) . Finally consider Iz,: (\.\,D)\/ A3 */p)
This can be written successively as T, = €, (."\’,,;\7 v =

©o (-0‘0\ VV ¥ = C"v) vvh V") Equation (1) then clearly £

follows from these results.

We now turn to a more general situation. If one uses non-~
linear variational parameters then the whole concept of an
oscillator strength will probably be meaningless (it will depend

on &0 ). However one may still ask, does one have
4
Lin L) = = (%o, Tv, t\%\/llio) 2
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We will now show that if one gets the frequency dependence correct

then the coefficient will be correct provided (as was the case above)
S¥e- \/‘}’o

is an allowed variation.
. » . ,
In accord with thesassumption let us assume that our trial

functions can be written as

Tea Vv {5




where ol and F are variational parameters and whereX can be
"anything". For convenience but without loss of generality we will

however assume that

(V\\"’) X) =0

Further, in accord with our assumptions we will assume that as

w0 the optimal trial function takes the form

Yo 5 A +B - (2)

w w~
Indeed this is probably not really an assumption since the analysis
below implies that for consistency, the already assumed form of the
trial function plus the variation principle, pretty much implies (2).
The proof now proceeds as follows: Evidently 6¥t: ’XE
is an allowed variation whence it follows from the variation
principle

(3¢, (a-eptu) i) + vy, Vo) =p

that the optimal value of the polarizability will be

< =3 L &, et +( Vi, Yl—wd? | (3)

Suppose now that we vary o‘n\‘a, o .Then we have that

(V% (B~Eo3w) L) + Wikp Vi) =0

Then letting (y-#oQ and using (2) one finds from the terms

independent of (W that




<V‘\’°)A) -+ (V\l/o,VQ’v\=O (4)

while from the terms of order Q\)A one finds
Cude, Co-eo) ADY (VIp®D =0 (5)

Thus from (4) and (5) we have that as W =X

(o, Xe) —> — (o Vo) _ (o, ToNTA) - O
W w*r

We will now show that = - \[qu . Then (6), in conjunction

with (3), will yield the announced result since

(o, TV, TondI¥ ) 2 (o, TH VAV

To show that A»;_—V\l.io we note that from ("‘\) it follows

that

A-.-_-_ —_V q’o “’A_\__

where (V+° )] A.L) =0 , and further it is clear that A_L

can only arise from X , i.e., as W ——?w)x must go to a

constant times A! . Now let us vary /.)> . Then we learn from
[7e]

the variational principle that



( X, (4- &+w) VYe) =0

which, in the infinite frequency limit, yields

or

(P*l.) l*l:) =20 - PLl_=:()

which proves the point.
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In connection with the discussion in Footnotes 5 and 6 we may
note that if W "Qo “f:" Eo*’o then one readily finds

that the left hand side of (1) equals the right hand side of (1)
plus (o, (M~RINZH) + (%o Vv (o8 %o )

where 3 ‘\’oc &o"¢yp . Note that the discrepancy is independent

of the size of the basis set.




